

Faculty of Engineering and Technology

Master of Software Engineering

Automatic Generation of Android SQLite Database

Components

Author

Iman Musleh

Supervisor

Dr. Samer Zain

 June, 2018

I

Faculty of Engineering and Technology

Master of Software Engineering

Automatic Generation of Android SQLite Database

Components

SQLiteالأندرويد اتنتلقائي لمكونات قواعد بيانشاء إ

 Author: Supervisor:
 Iman Musleh Dr. Samer Zain

Committee:

Dr. Samer Zain

Dr. Adel A Taweel

Dr. Mamoun Nawahdah

This thesis was submitted in partial fulfillment of the requirements for the Master’s

Degree in software engineering from the Faculty of Graduate Studies, at Birzeit

University, Palestine

June, 2018

II

1

Abstract

Chapter 1 Mobile applications (apps) are becoming ubiquitous and at the same time getting more complex to develop.

Specific development tools and techniques are always essential to facilitate the development of reliable and cost effective

mobile apps. However, a large fraction of Android app developers is known to be novice and do come from non-computing

background. To assist developers, this research addresses the problem of automatic generation of Android client data

persistence components, and presents a technique for creating SQLite database and APIs. The technique is based on a tool

named ASQLC that automatically generates local Android database as well as the API classes that perform read/write

operation on that database.

Chapter 2 ASQLC is build based on model-driven software development techniques to enable automatic generation of

Android client data components (SQLite) without having any advance computing skills. To evaluate the tool, a preliminary

experiment has been conducted on less-skilled novice developer students to measure its performance, how it helps the non-

computing student in building Android mobile app and how it improves the development time and effort. Experiment

results show that ASQLC can reduce the development skills and time to develop SQLite database.

Chapter 3 At the end, the Feature comparison between ASQLC and SQLiteOpenHelper class and Simba platform as a

SQLite database assistance was presented. The results show that the ASQLC might be a promising tool and usable since it

can generate SQLite database component and APIs automatically with minimum effort and coding skills.

2

 الملخص

ورية ن الأدوات والتقنيات المتنوعة ضر ا أصبحت تطبيقات الهاتف المحمول واسعة الانتشار بالرغم من زيادة صعوبة بنائها. و
قات ول الموثوق بها. ومن المعروف أن الجزء الأكبر من مطوري تطبيلقليل تكلفة و لتسهيل تطوير وبناء تطبيقات الهاتف المحم

الأندرويد مبتدؤون ويأتون من خلفيه غير حوسبيه. ومن هنا جاءت فكرة البحث لمساعدة هذه الفئه من المبرمجين عن طريق
. هذه التقنيه APIsوتوفير ال SQLiteبناء تلقائي لمكونات قواعد بيانات الزبون المؤقته، وعرض طرق بناء قاعدة البيانات

التي APIsالتي تقوم بانشاء تلقائي لقواعد بيانات الاندرويد لطرف الزبون وتوفر ال ASQLCطبقت من خلال أداه تسمى
 تقوم بعمليات القراءه والكتابة عليها.

 خلصه لتطوير البرمجيات لتساهم فيالتي بنيت بالاعتماد على تقنيات النماذج المست ASQLCتقدم هذه الرسالة الأداة
(في تطبيقات الأندرويد بدون الحاجة لامتلاك مسبق لمهارات الحوسبة. SQLiteبناء تلقائي لمكونات قواعد بيانات الزبون)

وعليه قام مجموعة من طلاب البرمجة المبتدئين من ذوي المهارات المبتدئه بتجربة هذه الأداة كتجربة أوليه من أجل قياس أدائها
لنتائج الوقت والجهد اللازم لذلك. كانت ا وكيفية مساعدة الطلبة في بناء تطبيقات الأندرويد للهاتف المحمول وكيف اختصرت

 .SQLiteقادرة على توفير الوقت وتقليص المهارات اللازمة لبناء قواعد البيانات ASQLCمرضية حيث أثبتت أن الأداة
ي ف وحرصا منا على التأكد من فحص الأداة ومقارنتها مع ما هو متوافر في سوق البرمجيات من أدوات وتقنيات مساعدة

. Simbaو SQLiteOpenHelper و ASQLC، قمنا يعمل مقارنه بسيطه بين خصائص كل منSQLiteبناء قواعد البيانات
هي أداة واعدة وسهلة الاستخدام مقارنه مع غيرها من ASQLCليها كان من الواضح أنإوبناء على النتائج التي توصلنا

بأقل جهد وخبرات برمجيه APIsلبيانات وتوفير ال الأدوات حيت أنها تقوم ببناء تلقائي لقواعد ا
 سابقة.

3

Table of contents

Abstract .. 1

Acknowledgements ... 8

Chapter 1 ... 9

Introduction.. 9

1.1 Overview of Research Area ... 9

1.2 ANDROID Platform ... 10

1.3 Research Problem and Motivation .. 11

1.4 Main Contribution .. 12

1.5 Solution Approach .. 12

1.6 Aim and Objectives... 12

1.7 Structure of Thesis .. 13

Chapter 2 ... 15

Background and Literature Review .. 15

2.1 Introduction .. 15

2.2 Mobile Cloud Computing Definition and Challenges 15

2.3 Android Database ... 19

2.3.1 SQLite Database .. 19

2.3.2 Cellica Database .. 22

2.4 Model –Driven Engineering ... 23

2.5 Automatic Code Generation .. 24

2.6 Existing Solutions for Mobile Application Data Creation. 25

2.6.1 Simba Platform.. 25

2.6.2 SQLiteOpenHelper.. 26

2.7 Discussion and Conclusion ... 28

Chapter 3 ... 30

Methodology .. 30

4

3.1 Main Methodology Approach .. 30

3.2 Solution Approach .. 31

3.3 Code Generation Methodology .. 33

Chapter 4 ... 34

Tool Architecture and Implementation ... 34

4.1 Tool Architecture .. 34

4.2 An Example of Using ASQLC ... 38

4.3 SQLite Database Generating Algorithm ... 43

Chapter 5 ... 48

Experiment Design ... 48

5.1 Novice Developers Background ... 48

5.2 Experiment Environment... 49

5.2.1 ASQLC Tool .. 49

5.3 Research Hypothesis ... 50

5.4 Experiment Metrics .. 50

5.4.1 Development and Debugging skills .. 50

5.4.2 Number of Source Lines of Code (SLOC) ... 50

5.4.3 Ease of Learning .. 51

5.5 Independent Variables ... 51

5.6 Experiment Scenario .. 51

5.6.1 ASQLC Scenario ... 51

Chapter 6 ... 53

Experiment Results ... 53

6.1 Experiment Scenario Results ... 53

6.1.1 Development and Debugging Skills.. 53

6.1.2 Number of Source Lines of Code (SLOC) ... 56

Chapter 7 ... 57

5

Analysis and Discussion ... 57

7.1 Analysis and Discussion ... 57

7.1.1 Experiment Analysis ... 57

7.1.2 Result Reflection on Hypothesis ... 60

7.1.3 Comparison with Other Tools .. 60

7.2 Threat to Validity ... 61

Chapter 8 ... 63

Conclusion ... 63

8.1 Conclusion ... 63

8.2 Future Work ... 64

References: ... 65

Appendix A: Questionnaire .. 68

Appendix B: ASQLC User Interface Source Code ... 70

Appendix C: ASQLC Library Source Code .. 79

6

List of Figures

Figure 2-2. Create table using Simba tool. [37]Error! Bookmark not defined.

Figure 3-3. Structure diagram of ASQLC...............Error! Bookmark not defined.

Figure 4-1. The architectural functionality of ASQLC tool.Error! Bookmark not

defined.

Figure 4-2. UML model for SQLite creator.Error! Bookmark not defined.

Figure 4-3. Sample of XML file.Error! Bookmark not defined.

Figure 4-4. ASQLC user interface.Error! Bookmark not defined.

Figure 4-5. XML file content.Error! Bookmark not defined.

Figure 4-6. Android application folder contents.Error! Bookmark not defined.

Figure 4-7. Application folder after import library.Error! Bookmark not

defined.

Figure 4-8. Calling BDCreator constructor.Error! Bookmark not defined.

Figure 4-9. Insert new record code.Error! Bookmark not defined.

Figure 4-10. SQLite database table and records.....Error! Bookmark not defined.

Figure 4-11. Pseudo code of algorithm.Error! Bookmark not defined.

Figure 4-12. Sequence diagram of ASQLC.Error! Bookmark not defined.

Figure 6-1. SQLite database creation code.Error! Bookmark not defined.

Figure 7-1. What is your programming experience level?Error! Bookmark not

defined.

Figure 7-2. If you create SQLite database before, do you face any programming

or coding problem? ...Error! Bookmark not defined.

Figure 7-3. Can you achieve your goals from this tool?Error! Bookmark not

defined.

7

Figure 7-4. Do you face problems during used this tool?Error! Bookmark not

defined.

Figure 7-5. If you create SQLite database before, compare between this tool

and other technique that used before?Error! Bookmark not defined.

Figure 7-6. Do you prefer using this tootl again? ...Error! Bookmark not defined.

List of Tables

Table 6-1. Number of the source line of code (SLOC).Error! Bookmark not

defined.

Table 7-1. Tools features comparison.Error! Bookmark not defined.

8

Acknowledgements

First of all I am thankful to ALLAH the Almighty for HIS blessings and for giving

us the knowledge and patience to complete this thesis work.

I would like to express our sincere gratitude to our advisor Dr. Samer Zain for his

motivation, guidance and support throughout the thesis.

Chapter 4 I am thankful to my parents, husband, daughters and parents-in-law for

their prayers and support throughout my studies.

9

Chapter 1

Introduction

1.1 Overview of Research Area

Mobile applications (apps) have changed how people use software and have become an

indispensable part of our modern life. This is due to the exponential growth of mobile users and

apps as millions of apps are available at online stores. Further, mobile apps are used in many

different domains and contexts[1, 2] such as entertainment, utilities, navigators, social networks,

health, and banking to mention a few.

In consequence, mobile app development has emerged as one of the most focused areas in the

software industry due to the huge number of mobile users, mobile devices and the variation in

mobile platforms. There are multiple app stores for Android, iOS, and Ubuntu Mobile OS. Industry

analysts estimate that there were more than 5 million apps available through the various stores and

marketplaces in 2017 [3]. However, the large portion of the Android developers is novice and non-

computing developers, who are non computing students, come from a non-computing background

and need to create a simple android app with local database for final or graduation project also

they come from a non-computing background [4].

In general, most of the mobile apps have to deal with a local database to store their data. However,

creating client-side data components requires advanced coding and computing development skills

[5] Such skills are usually missing by non-computing developers and students. There exist some

studies that propose to help and facilitate the Android client database creation. For instance, the

study by [6] offers Simba platform, which helps mobile app developers in building a data model

10

easily by facilitating the development and deployment data-centric mobile apps, providing a

unified table and object APIs (Application Programming Interfaces). Such APIs offer creating

database tables, read and write database tables and do a synchronization process. In another study

by [7], the authors present SQliteOpenHelper which handles changing database and allows users

to customize their own database. In addition, it offers an API called DBManager which performs

all database CRUD (Create, Read, Update and Delete) operations.

However, these tools depend largely on developers’ advanced coding skills and knowledge. Also,

they require developers to be familiar with SQLite schemas, database tables and its relations,

implement classes and overriding methods. In general, these tools are incompatible with the

development level and skills of novice who normally require extra coding effort and workarounds.

Therefore, non-computing developers and students are looking forward for a tool to facilitate

database creation. In this thesis, the aim is to build a tool, which focuses on automatic generation

of Android native database components (SQLite).

1.2 ANDROID Platform

Android platform has the largest market share compared to the other platforms [5]. This is due to

it is free and open-source for developers to develop apps. The open-source feature has made smart

devices cheaper to buy and thus be available for all different people segments like employees,

students, teachers and doctors. In addition, many device manufacturers such as Samsung, Google,

Sony, HTC, Dell, etc., assist in developing Android further, thus there are better and quicker

innovations with the Android Platform than others platform. In addition, Googles’ smartphone

operating system powers a shopping 80% of devices worldwide while Apple’s iOS operating

system for the iPhone only powers 13% of smartphones and 7% for others [8] , because of the

Android platform is used by the most of smartphone and device types[9].

11

There are many attracted features and characteristics of Android for apps developers and users.

Firstly, security feature which comes from using a Linux kernel and memory management and

process management features [10]. Secondly, it can provide the functionality of some native

libraries via Java framework APIs. Thirdly, it comes with a set of core apps for email, SMS

messaging, calendars, internet browsing, contacts and more [11]. Fourthly, Custom Home Screens

feature allows you to download a third party launcher, which allows for older-model devices to

create shortcuts and add gestures [12]. Further, Android widgets display only the selected features

on home screen such as weather apps, music widgets, or productivity tools [12]. Finally, SD card

feature which is special for Android devices to expand its storage space.

1.3 Research Problem and Motivation

Nowadays, a large portion of Android developers are novice and come from non-computing

background. Further, novice developers of mobile apps are growing increasingly, especially in the

academia and industry sectors [13]. For instance, many non-computing engineering students tend

to develop computerized systems at their final year project, especially using the famous platform

of Android OS as it dominates the largest mobile market share with over 5 million Android apps

currently registered in Google play [3].

Accordingly, non-computing developers need automated tools that can help them in building rapid

mobile apps easily away from low-level development techniques. Such assistance can be provided

by automatically generating the client-side local database (SQLite).

In other words, developers need only specify a data model (database schema) spanning tables and

objects to build the database, then the automation tool will generate the local database components.

https://source.android.com/security/overview/kernel-security.html

12

However, many mobile apps require dealing with a local database (SQLite). Non-computing and

novice Android developers may find it difficult to build such applications. Automation tools that

can aid novice developers by generating the client-side database components is still largely

missing.

1.4 Main Contribution

The main contribution of this thesis is focused on assisting novice and the non-computing Android

developers in order to create a simple SQLite database for graduation and course projects. The aim

is to build a tool that generates Android client database components which represent the SQLite

database as well as the API (Application Programming Interface) automatically. Thereby, non-

computing Android developers shall only specify their database schema, and the automation tool

will generate the database components automatically. Further, the tool will be evaluated through

well designed experiments to measure its usability.

1.5 Solution Approach

This thesis aims to build a tool based on model-driven software development techniques to enable

automatic generation of Android client data components (SQLite) without having any advance

computing skills. After building the tool, it will be evaluated on a non-computing student with the

different computing skills and backgrounds.

1.6 Aim and Objectives

The thesis’s solution approach is based on Model-Driven Engineering (MDE) using XML to

represent the data model which will be used later on to generate the Android client data

components (SQLite).

The main objectives are:

13

 Build a ASQLC tool based on model-driven software development techniques enabling

automatic generation of Android client data base components (SQLite) to facilitate

building apps as simple as possible.

 Do a comparison between ASQLC tool with other existing solutions,

i.e. SQLiteOpenHelper and Simba platform.

 Test and evaluate the proof-of-concept tool on novice and non-computing students. Also,

the performance execution time and the development time will be measured and show how

it improves mobile app building by less skilled and non-computing engineering student.

1.7 Structure of Thesis

The report is organized in the following chapters;

 Chapter 1: Introduction

This chapter presents the overview of a research area, the Android platform descriptions, research

problem and motivation, main contribution, solution approach and aim and objectives of this thesis

 Chapter 2: Background and Literature Review

In this chapter, the critical literature review and the background will be presented into five groups,

Mobile cloud computing definition and challenges, Android database storing approaches,

automatic generation, Existing Solutions for Mobile Application Data Creation and discussion and

conclusion of the chapter.

 Chapter 3: Research Methodology

In this chapter, the research methodology and solution process are discussed with the simple

representative diagrams.

 Chapter 4: Tool Structure and Implementation

14

In this chapter, the architecture and the overview of ASQLC toll will be presented, focusing on the

process it employs to perform fully automatic generation of Android client database components

(SQLite).

 Chapter 5: Experiment Design

In this chapter, the experiment design and environment are presented. Also, experiment

environment was set up for the experiment.

 Chapter 6: Experiment Result

In this chapter, the experiment results for all the experiment scenarios which were discussed in

experiment design chapter will be presented.

 Chapter 7: Analysis and discussion

In this chapter, the experiment result, literature study result and the threat to validity will be

discussed and analyzed

 Chapter 8: Conclusion

This chapter shows a conclusion of ASCLC tool, starting from objective, literature review, tool

design and structure and achievement result. In addition, the future work will be showed here.

15

Chapter 2

Background and Literature Review

2.1 Introduction

Most of the mobile apps use local database to persist their data. For a non-computing mobile app

developers, it is not easy to build a mobile app that depends on database storage and its operation

such as insert, delete or update actions. This is because using Android SDK (Software

Development Kit) and SQLite database is not a trivial task and requires skilled developers [14].

The following critical literature review will focus on how to facilitate database creation and its

operations on the client side of Android apps. This chapter presents in-depth discussion of related

work of seventeen (17) studies by carefully grouping them into different categories. The critical

review is based on the methodology provided by Jesson e Lacey [15]. The first group includes

mobile cloud computing definitions, its pros and cons and why a non-computing developers should

have avoided it in their app. The second group includes Android SQLite and Cellica definition,

architecture and components and comparison between them. The third group discusses the

automatic generation process and how it is structured for apps. Finally, existing solutions for

mobile app data creation and drawbacks for each one are discussed.

2.2 Mobile Cloud Computing Definition and Challenges

All of the studies at [16-18] defined a Mobile Cloud Computing (MCC) by paraphrasing the same

keywords of this definition: “Mobile cloud computing at its simplest, refers to an infrastructure

where both the data storage and data processing happen outside of the mobile device. Further,

Mobile cloud applications move the computing power and data storage away from mobile phones

16

and into the cloud, bringing apps and MC to not just smartphone users but a much broader range

of mobile subscribers” [16].

There are typical services which are needed by a mobile cloud for both client and server side. The

main services are needed for the client are synchronization to synchronize all changes in mobile

clients; cloud server; and database service which is used to manage local data storage for

apps. On the server side, it requires synchronization service in order to synchronize client’s

database changes to the server database and used a push service to monitor data channels for

updates[16]. In general, the main benefits of using the mobile cloud computing are overcome

limitations of mobile devices, especially in processing power and data storage and it used as a

virtual network operator [19].

Christensen [17] depended on the main concepts of MCC that defined in [16] to find next

generation of apps using a RESTful web-services and cloud computing. Apps has many limitations

on building apps cycles from requirement elicitation to testing and publishing app. Before

publishing mobile apps, apps need to be tested on different environment characteristics, mobile

machines and user experience. MCC recovers these limitations by combining sensors on a mobile

device, RESTful web-services, Cloud processing and REST. Mobiles’ sensors have ability to

offload data storage with its security in cloud computing over the available network via RESTful

web-services using any different cloud platforms like Amazon and Google cloud which used a

REST as a connection layer between mobile platforms and cloud computing. [17]

Fernando [17] did a survey on the Christensen [17] argues in order to answer on these questions,

“How can computation be offloaded and distributed to the cloud efficiently and in which ways

does this differ from traditional distributed computing? How does mobility affect the performance

17

of a mobile cloud?”[20]. In accordance with previous paper [17], the study by Fernando [20]

highlighted on offloading methods in three sides Mobile agents, Virtualization and Client–Server

Communication process. Each one has a different communication process, protocol and

components, i.e., the communication process of Client–Server communication is performed

between surrogate device and mobile device through Remote Method Invocation and Remote

Procedure Calls protocols which are supported APIs. [20]

Moreover, mobile cloud dis-connectivity and disconnection are effected on mobility, this issue can

be managed and supported via different management techniques such as component and proxy

migration and fault tolerance methods. Web services suggest a solution for this issue by connecting

the app with the web services which are enabled users to continue their work while offline mode.

To conclude that, mobile cloud computing can empower its users by providing a rich and seamless

functionality, mindless of resources mobile devices limitations [20]. After all of these MCC papers

[17, 18, 21] were published, MCC was spread out and became using in different fields like m-

commerce apps for transaction, payments and ticketing, m-learning apps which provided learners

with much required services in terms of information size, processing speed and healthcare apps

that changed the traditional medical treatment to be organized as fast and easily as possible. [21]

The advantages of MCC are:

 Improving data storage capacity and processing power: Mobile cloud computing enables

mobile users to store or access the huge data on the cloud via a wireless network

connection.[19, 21]

 Reliability: It allows authorized users to access their data from anywhere in the world, any

time and using any mobile device. [21]

18

 Scalability: The cloud service providers like Amazon, Microsoft’s Azure and Google’s

App Engine can expand their cloud services with less effort and modification to

infrastructure. [21]

 Extending battery lifetime: MCC enhances the CPU performance and manage the disk to

reduce power consumption, which is one of the main problems for mobile devices. [19]

 Help requirement elicitation: MCC can be used for large batch-oriented tasks to collect

requirements from open global stakeholders.

Although all of these advantages of MCC, it still has some drawbacks, mainly:

 Security: despite there are a different cloud security approaches, security still the biggest

challenges of the cloud computing. [22]

 Performance: cloud is a solution for organizations with large variations in computing

demands.

 Latency and Network Connectivity: mobile cloud misery from a limited network speed and

unstable Connectivity.

 Absence of Service-Level Agreements: no SLAS is another problem of cloud providers.

[22]

 Scalable Storage: cloud computing is suffering from adding an infinite number of servers

due to it needs a suitable architecture for processing, memory and storage. [22]

 Help a computing developers, while it cannot be used easily by a non-computing developer.

 No Scalable Storage: not simply for adding multiple services which may be required in

different architectures of processing, memory and storage. [22]

19

 Flexibility of user interface: there is a lack of flexibility for user interface which is the

important part of the apps and UI composition frameworks limit cloud users with UI

choices.

 Extra work: not compatible with some existing programming frameworks, libraries and

tools, which requires extra code and workarounds.

 Cloud computing costs: although it can allow you to reduce staff and hardware costs, it

could be pricey for medium/large projects on a long time. [22]

2.3 Android Database

There are several data storing approaches to store user and app data in Android platform locally,

such as SQLite and Cellica database which will be discussed on this section.

2.3.1 SQLite Database

All of [23-25] studies justified the reasons of why they studied SQLite, and recommend to use it

due to its easy to use, portable, reliable, compact and efficient.

Both of [23, 24] studies introduced the SQLite database and its history. After that, they showed

the reason of SQLite designed, and its architecture, features, philosophy and main interface

functions. Moreover, [22] research depicted the basic characteristics of the embedded database.

Finally, Vogel [26] presented a full tutorial on how using the SQLite in Android app.

2.3.1.1 SQLite architecture

Figure 2-1 shows the internal architecture of SQLite database. The SQLite database structure has

three parts with eight primary subsystems i.e. Core includes Interface and Virtual Machine

subsystem, SQL Compiler includes Tokenizer, Parser, Code Generator subsystems and Backend

includes B-Tree, Pager and OS Interface subsystems. In addition, Accessories are also included in

the structure with utilities and test code subsystems.[23, 27]

20

Figure 0-1. Internal architecture of SQLite database.

The most top-level interface for SQLite is based on a C language library. The SQL statements start

from interface to SQL command processor which go into the SQL compiler to be decomposed by

tokenizer then go to the parser that can add the identifiers. Then, they go to the code generation

after recomposing to generate the virtual machine code. The virtual machine called Virtual Data

Engine (VDBE), the instruction set of VDBE can do a special database and stack operations, such

as insert a record, query and transaction processing [23, 28].The Backend part is as a transit station

for the database pages with three parts B-tree, Pager and OS interface, B-tree and pager responsible

for transfer data blocks to OS interface.

Furthermore, the SQLite architecture also includes Accessories part that has Utilities and Test

code. Utilities deals with memory allocation, random number function of SQLite, lexical analysis,

storage of grammatical analysis and professional printing function. In addition, test code for script

testing uses many available assert statements.

21

2.3.1.2 SQLite definition, components and features

This section is a summary of Android SQLite definition, architecture, features and its main

components that should be understood before using it as presented in [22-24]. SQLite is one of the

Android database storage options, which is Open Source and light-weight relational database that

is already installed with Android OS by default [24, 27]. Further, SQLite is a standard relational

database which provides SQL syntax, transactions and prepared statements. There are

approximately 3.5 billion smartphones in active use with millions of copies of SQLite in the world.

In fact, SQLite is mostly used compared to other database engines [13]. As any other databases,

SQLite supports different data types like TEXT, INTEGER and REAL to mention a few.

To create SQLite database using Android SDK you need to understand the main classes

SQLiteOpenHelper, SQLiteDatabase and Cursor. Firstly, SQLiteDatabase is the main class for

SQLite database development. This class provides open and close database connection methods,

it includes specialized methods for adding, deleting, modifying records and data query insert(),

delete(), update() and query() respectively. In Addition, it contains the execSQL () method which

is required to execute an SQL statement directly. Further, in order to execute SQL query, a

developer should use ContentValues to define the table columns and the content of the table

records. Finally, there are many other classes and functions that will be used in order to execute

different types of queries such as SQLiteQueryBuilder class and rawQuery[1].

Secondly, SQLiteOpenHelper abstract class that is derived when you need to create a new

database, it has two main methods that need to be implemented onCreate() and onUpgrade().

 onCreate(SQLiteDatabase database) is called for creating the database; it contains table

and database object codes.

22

 onUpgrade(SQLiteDatabase database, int oldVersion, int newVersion) is called when the

database structure is modified to know what need to be upgraded i.e. version, tables or

objects.

Thirdly, Curser interface, the object of the data query implements the Curser interface. This

interface shows up methods to browse records such as (move(), moveToPosition(), moveToFirst(),

moveToNext(), moveToPrevious() and moveToLast() . Also, it has getTYPE() method, it obtains

fields’ value in the current record depending on column index and data type.[29]

2.3.2 Cellica Database

Cellica Database for Android apps allows viewing, insertion and updating the database contents

on an Android device. It has a synchronization feature that is compatible with Microsoft Access

and Excel, Oracle and SQL Server. [23]

Cellica Database software package consists of client and server side databases. The client side runs

on Android devices and the server side is called a desktop side that runs on Microsoft Windows.

The server side is used to create the database which is synchronized with Android devices. On the

other side Android device, the database will be synchronized with the server-side database

wirelessly. [23]

In conclusion, SQLite database is widely used by many popular Android apps due to it is a

lightweight transactional database and does not require any database administration or setup.

Moreover, there are many papers and references depend on or used it such as [23-25] papers. Thus,

the SQLite database is a perfect choice for creating an Android local database.

23

2.4 Model –Driven Engineering

Model Driven Engineering aims to raise the level of abstraction in program specification and

increase automation in program development. The idea promoted by MDE is to use models at

different levels of abstraction for developing systems, thereby raising the level of abstraction in

program specification. An increase of automation in program development is reached by using

executable model transformations. [30, 31]

There are many benefits of depending on Model Driven Engineering in automation tools. At the

beginning, the stage of the process in which the design is translated into code is largely automated.

Depending on the technology used, changes in the model can be converted into error-free code

with one touch of the button. In addition, all the software development parties work together

within a single model, keeping errors to a minimum. For more complex types of software, this

methodology improves transparency, results in a more structured way of working, and makes it

easier to oversee the process. Moreover, users can make changes to the model directly at any time

in Model Driven Engineering since it eliminates the need for external document tools which

containing all manner of disjointed information about the software. Finally, Model Driven

Engineering also adds value to customizable processes. This methodology allows users to quickly

and easily adapt software to changing needs and situations.[30]

As a conclusion, as shown in different studies and researches [31-33] , Model Driven Engineering

focuses of work from programming to solution modeling. The model-driven approach has a

potential to increase development productivity and quality by describing important aspects of a

solution with more human-friendly abstractions and by generating common application fragments

with templates.

24

2.5 Automatic Code Generation

Automated systems saved the effort and the time of development phase and decreased the

complexity and the cost of developing a new app. Also, a common framework facilitated the

modification of app and simplified reusing for multiple purposes. In the other words, it can help

non-computing developers to develop apps without required high development qualifications. In

this section, the architecture of building an automatic generation of any process will be shown in

details.

Nayar [30] presented a common framework to create a apps automatically. He developed an

automated app creator which used XML files as input, then created the user interface app and local

database schema seamlessly. At the same time, the server side of app was developed to synchronize

and store the collected information on a centralized database server [34].

The frameworks’ architecture was three tiers architecture. The first layer was presentation layer

which interact between app and user. Business layer was the second layer where the XML with

required information was parsed to create all the form fields. At the end, database layer to create

local and server database, depending on the extracted information from an XML feed. [6]

The paper by Gropengießer e Sattler [6] came across with [34] by using the same automatic

generation concept for the same purposes automate generation, deployment, operation and

management of the back-end service. In the same way that used by Nayar [34] and Gropengießer

e Sattler [5] build a framework based on model-driven software development techniques enabling

automatic generation of app servers using SQL databases. His framework took a user-friendly

from XML file, including a description of conceptual schema with its operations which is input

25

of code generation, then he created a RESTful application using MySQL, Apache Tomcat and

Hibernate2, after extracting all of the required information from the XML parser [6].

In conclusion, the Model Driven technique was used in all types of automatic generation and

frameworks creation in a mobile development environment or others. There are many papers

depend on it to generate frameworks like [34] and [6], since it has clear and simple steps to be

followed by implementation. Basically, it used xml file as an input file of all needed and required

information as a description of conceptual schema and standard operations. After that, it parsed all

of this information in order to build a framework.

2.6 Existing Solutions for Mobile Application Data Creation.

2.6.1 Simba Platform

SIMBA tool was built in 2013 by Agrawal et al. [35]. According to their study, SIMBA aims to

facilitate data model building process. It focuses on building a data model that requires a table data

to rely on an object data and vice versa. Simba platform facilitates development and deployment

of data-centric mobile apps, providing a unified table storage and object API for both structured

data and unstructured objects.

Simba tool consists of two components: Simba Client Data Store (SDS) and Simba Cloud. The

first component, Simba Client Data Store (SDS), is responsible for storing data on persistent

storage of mobile device, also it provides a data API for access, manage local replication of data

on mobile device, and connect with cloud one. The second component in Simba Cloud is the

storage system which is accessed by different mobile apps reflecting all mobile client functionality,

deduplication and versioning.

26

When using a Simba platform, developers need to specify a data model spanning tables and

objects. Later, the data is synchronized anatomically depending on cloud without worry about

network disruptions. This is done by calling its API such as a createTable() and writeData()

respectively for creating database tables and write on the tables [6, 36]. However, Simba doesn’t

build an SQLite database, it has a Client Data Store (SDS) component that stores app data on

mobile devices persistent storage internal or external data storage. When a developer uses this tool,

it is required to call createTable() and writeData() methods respectively to create a table and insert

record as shown in Figures 2-2 and 2-3:

Figure 0-1. Create table using Simba tool. [37]

Figure 0-3. Insert record using Simba tool. [37]

This method deals with unified structured table storage and object storage instead of SQLite

database. It provides a unified logical namespace over tables and objects without the app developer

having to deal with the table and object storage. [29]

2.6.2 SQLiteOpenHelper

SQliteOpenHelper helps Android developers in abstracting SQLite database components. It

provides create, upgrade and maintain functions that manage local database creation [36, 38]. More

27

specifically, the tool offers three main methods, namely onCreate(), onUpgrade() and onOpen().

The onCreate() method is used to create a database at the first time. The onUpgrade() method is

used to upgrade the database if there is any upgrading or modification on database tables’ structure

or records. Finally the onOpen() method opens the database if it exists or creating it if it does

not[36, 39].

For instance, when a developer wants to create a database called exampleSQLite which has one

table with three columns. The developer needs to extend SQLiteOpenHelper and implement

onCreate() and onUpgrade() methods. Whenever a database is created or upgraded, its appropriate

method will be invoked. After that, the developer needs to call SQLiteOpenHelper’s constructor

passing three parameters: application context, database name and version. In onCreate() method

the developer needs to write table schema. When overriding onUpgrade() the table is droped and

onCreate() method is called. Finally, the CRUD operations are executed using

getWritableDatabase() method from SQLiteOpenHelper to get the database reference object, then

store column key and value in the ContentValues object [39]. Once the database is created

successfully it will be located in data/data//databases/ directory that can be accessed from Android

Device Monitor.

As a conclusion, for a simple database that consist of only one table, the developer needs to write

at least three classes. The first class “databaseHelper” which extends SQLiteOpenHelper to

implement its constructor, onCreate() and onUpgrade() methods. The second class to identify table

columns names and types and write insert, update and delete schemas. The last one is the main

class that calls database creation methods from databaseManager class and insert record into

database table.

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

28

 Although SQLiteOpenHelper simplifies the SQLite database creation process, it still requires a

skilled developer with coding knowledge and experience to implement this class.

In conclusion, all of these solutions are still incomplete to help non-computing developers to build

apps with their circumscribed development knowledge. Both of them can’t help a novice developer

to create SQLite database without having a development knowledge and understanding all SQLite

database components and functions. The first solution required understanding framework and its

functions which are depending on database structure and queries. Otherwise, the second one is

more complex the Simba platform since it requires deep understanding of SQLiteOpenHelper,

SQLiteDatabase and Cursor.

2.7 Discussion and Conclusion

Nowadays, many Android apps are depending on local storage to persist its data locally. In

addition, a large portion of the Android developers are known to be a novice and non-computing

developers, who come from a non-computing background.[8] Moreover, database creation and its

operation such as insert, delete and update required a deep software development knowledge,

accordingly novice developer cannot build apps and its SQLite database easily.

Although, Mobile Cloud Computing [15-17] assists in mobile database creation and

synchronization between the mobile client database and the server-side database to solve the

inconsistencies between them, it still has a lack of flexibility for user interface with its limited

choices for cloud users, incompatible with all existing programming frameworks, libraries and

tools, which requires extra coding and workarounds and could be pricey for medium /large project

on a long time. These drawbacks of MCC impeded non-computing developers to build apps

successfully.

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

29

In this thesis, the aim is to build a tool based on model-driven software development techniques

enabling automatic generation of Android client database components (SQLite) to facilitate

building apps as simple as possible. It is true that there exist some solutions such as Simba platform

by [29] and SQliteOpenHelper by [38], however, such solutions are directed to professional

developers and depend on creating schema, query, and database connection. This led to conclude

that there does not exist a complete solution, which can help the non-computing students to build

mobile apps with local storage.

30

Chapter 3

Methodology

3.1 Main Methodology Approach

The main goal of this dissertation is to facilitate the development of client database components

for Android apps. It will generate database components code for client-side automatically via

model-driven software development techniques. Model-driven software development techniques

were used by Nayar [27] and Gropengießer e Sattler [28] for the same purpose automatic

generation code. At first, the mobile apps architecture will be studied and analyzed. Based on this

analysis, a tool will be built which automatically generates the required code for mobile app client

databases components. Thereby, this dissertation focuses only on Android client-side databases

components.

Figure 3-1 presents a high-level design diagram composed of the following major components.

Firstly, the developer has to specify a database schema as tables, columns and types via a simple

user interface. Secondly, this tool has three main components XML file, XML parser and code

generation. It will store the schema in an XML standard file, it then parses and validates the stored

schema description using XML parser. An XML parser stores data schema and its details in an

array list, which is passed to the automatic generation algorithm that is present later. Thirdly, the

automatic generation component responsible for generating SQLite database components (

database tables and APIs). Finally, Android mobile client apps will be having the local SQLite

database.

31

Figure 0-1. High-Level Design Diagram.

3.2 Solution Approach

Novice Android developers with limited programming and development skills will find the task

of building local Android SQLite database to be an intimidating task. From this point of view, we

aim to facilitate SQLite creation process to be as simple as possible for novice developers.

Figure 3-2 shows the main two parts of the solution problem and the connection between them.

The first part is ASQLC user interface that collects database schema into the XML standard file

and stores it under the assets folder of the Android app. This XML file includes all of the required

fields like tables name, columns name and columns type to create Android client SQLite database

components. Second, ASQLC library for database creation, the local database (SQLite) will be

32

created on Android app (client-side) using the information provided in the XML. Therefore,

mobile app developers will not worry about the mobile app client databases creation process. He

only needs to fill database details into the ASQLC user interface, import the ASQLC library into

the Android app and call its constructor in order to create SQLite database. This process will be

discussed in details in the next chapter Tool Structure and Implementation.

Figure 0-2. The parts of problem solution.

The solution approach is designed as shown in Figure 3-3. Our tool, ASQLC generates Android

client database components (SQLite) in two main phases. In the first phase, the developer will

enter database table’s schema using ASQLC user interface. The tool will save the database schema

and its details as XML file. In second phase, another part of our tool known as SQLite Creator

(ASQLC library), reads the XML file and generates SQLite database of Android project.

Additionally, it generates API classes for CRUD operations which help developers to insert, update

and delete database records.

33

Figure 0-1. Structure diagram of ASQLC.

3.3 Code Generation Methodology

For developing a code generation tool, which information constitutes the conceptual schema as the

base for generating the code (input of the tool) and the target environment of the tool have been

determined. Also, all of the database schema information is needed due to the persistence of client

database. The code generation process is build based on SQLite generation algorithm which is start

of reading, parsing and validating database schema from XML file, then extending

sqliteOpenHelper class and overriding its methods in order to create the SQLite database. In

addition, all of the CRUD operations create, read, update, and delete on the local SQLite storage

will be supported. At the end, the output of the code generation phase is the SQLite database

components.

34

Chapter 4

Tool Architecture and Implementation

In this chapter, the architecture and implementation of ASQLC tool will be presented, focusing on

the process it employs to perform fully automatic generation of Android client database

components (SQLite).

4.1 Tool Architecture

Figure 4-1 despite the architectural functionality of ASQLC tool that is presented using the three-

tier architecture Presentation, Business and Database layers as the following:

 Presentation layer – this is the first layer which is the interaction interface between the Android

developers and tool. In this layer, the developer fills out all the required information to create

SQLite database such as database name, table name, columns name and columns types.

 Business layer – this layer stores database information into the XML file which is later on

parsed to extract schema details to create SQLite database components.

 Database layer – after the XML parser extracts database schema, in this layer the SQLite

database will be created. After that, novice developers can use this database via special API

for CRUD operations such as create, read, update, and delete database records.

35

Figure 0-1. The architectural functionality of ASQLC tool.

As shown in the Figure 3-3 Structure diagram of ASQLC before, it depicts our proposed

database generating approach. First, after the novice developer enters database schema the user

interface saves the database schema into an XML file. Secondly, the SQLite DB creator reads

the XML file and uses the XML parser and validator to parse and validate the database schema.

Then using the array list of the XML parser result, the creator applies the SQLite generating

algorithm and extends SQLiteOpenHelper class to produce the SQLite database and its APIs.

Figure 4-2 presents our UML model for SQLite Creator component.

36

Figure 0-2. UML model for SQLite creator.

The main classes of SQLite database creation process:

 The DBCreator – this class is the main class of our ASQLC library that connects to other

classes in order to generate SQLite database. When an object is created, it connects to the

XmlParser to get parsed value of the XML file and connects to the DatabaseManager to create

the SQLite database as constructor’s parameters. Furthermore, when the user wants to use

ASQLC library needs to create a new object of this class and call its APIs. It consists of the

following attributes and methods:

o DBCreator(): this is the class constructor, it has context, database name and database

37

version parameters.

o createXmlParser(): this method creates a new object of the XmlParser class that opens,

reads and parses the XML file.

o createTable(): this is a private method used to create a database’s tables.

o insertRecords(): this method inserts records into the specific table depending on its

parameters table name and list of records.

o updateRecords(): this method updates table records. Its parameters are table name, new

updates record, unique column name and key value of the record.

o deleteRecords(): this method deletes record from the table. Its parameters are table

name, unique column name and key value of the record.

 DatabaseManager – this class is responsible for the main connection of the SQLite database.

It has the openConnection, closeConnection, openDatabase and closeDatabase methods.

 AppDBHelper – this class extends the SQLiteOpenHelper and overrides onCreate, onUpgrade

and getWritableDatabase methods.

 XmlParser – this class is responsible to read, parse and validate the XML file, it has the

following methods:

o openXmlInputStream(): this method opens the XML file and gets its input stream.

o getLoadedXmlValues(): this validates and parses the XML file data.

ASQLC tool has three main components: (i) XML file creator which stores user inputs information

(database schema), (ii) XML parser and validator that stores data schema and its details in an array

38

list, and (iii) code generator component, which is responsible for generating the required code of

client SQLite data components:

 XML file creator: This component is responsible for transforming all database information into

single XML file. A sample of exported XML is illustrated below in Figure 4-3.

 XML parser and validator: after reading the XML file, the XML parser component stores data

schema and its details in an array list after checking its validation against predefine XML

schema.

 Code generator: Code generator is the main component of our tool. The code generation builds

SQLite database using the generated schema from XML parser. Also, the parser value is used

to create SQLite database[40]. On the other side, the code generation builds SQLite database

APIs which implements standard CRUD operations.

Figure 0-3. Sample of XML file.

4.2 An Example of Using ASQLC

In this section, an example of using the proposed tool for automatic generation of SQLite database

for Android apps will be shown.

Assuming the aim is to create SQLite database consisting of one table as the following table

schema:

39

Employees (eid: integer, name: String, gender: String, address: String)

Further, a new project is created targeting Android 7.1 platform using Android Studio 2.3.

Figure 0-4. ASQLC user interface.

The Android project has one activity named “MainActivity”. Later on, the developer should

navigate web page and fill the database table details as shown in Figure 4-4. Once the save button

is clicked, the web page asks to browse for the Android app directory where the database schema

XML file will be saved. Figure 4-5 shows the XML file that has the database schema.

40

Figure 0-5. XML file content.

Figure 0-6. Android application folder contents.

Thirdly, after the XML file is created under the assets folder of the app as displayed in Figure 4-

6, the developer should rebuild the app in order to sync it and adding its id into “R” file by choosing

Build option > rebuild project from the toolbar. Fourthly, the developer should import the ASQLC

library (jar) into the Android app. After the import process is done successfully, the library will be

available under the lib folder as shown in Figure 4-7.

41

Figure 0-7. Application folder after import library.

Figure 0-8. Calling BDCreator constructor.

Next, the developer creates a new object of the ASQLC library by calling DBCreator class. The

constructor for the DBCreator class has three parameters: app context, XML file name, and the

database version as shown in Figure 4-8.

The ASQLC library will in turn read, parse and validate the XML file to create SQLite database

components and the APIs. As a result, the SQLite is generated and its APIs are available to be used

for CRUD operations. Finally, to ensure the SQLite is created successfully, we call the APIs to

insert, update and delete records as shown in Figure 4-9. Figure 4-10 shows the SQLite database

with its records.

42

Figure 0-9. Insert new record code.

Figure 0-10. SQLite database table and records

43

4.3 SQLite Database Generating Algorithm

In this thesis, the database generating tool is based on parsing and validating XML file to generate

SQLite database for the novice developers.

The proposed algorithm for SQLite generation can be described in the following pseudo-code:

 Algorithm Input: SQLite database name and version and SQLite database schema as the XML

file.

 Algorithm Output: SQLite database as schema details and its APIs.

Algorithm basic steps:  

1. Open the XML file from the assets folder of the app. This file includes database schema.

2. Parse and validate the content of the XML file. After that, the parser value will be stored

in map depending on “Table” and “Column” tags and its values.

3. Create the SQLite database by calling the openConnection method of the databaseManager

that extends the SQLiteOpenHelper class.

4. Collect the SQLite statement of table creation from parser map as the following pseudo

code in Figure 4-11.

5. Execute the collected statements of the tables for creating them.

44

Figure 0-11. Pseudo code of algorithm.

Using ASQLC tool, the developer doesn’t need to deal with ContentValues, SQLite statement,

statement execution, upgrade or create database in this solution approach. The developer only

needs to follow sequence diagram that shown in Figure 4-12 to generate SQLite database. More

specifically, our solution technique can be described in the following detailed apps:

45

1. Create Android app using Android Studio.

2. Fill out required database information (database name, tables, columns and its types) using

ASQLC user interface.

3. After specifying the database schema, the developer is asked to select the Android app

actual location.

4. Then, ASQLC user interface generates an XML file under the assets folder of Android app

directory.

5. The novice developer rebuilds the Android app to sync it for adding the XML file’s id to

the R file.

6. The novice developer imports the ASQLC library as a jar file into the Android app.

7. The novice developer creates a new object from the main class of ASQLC library

DBCreator class.

8. The ASQLC library reads, parses and validates the XML file.

9. The ASQLC library creates SQLite database components and APIs.

10. Finally, the developer can use ASQLC APIs to insert, update and delete database records.

46

Figure 0-12. Sequence diagram of ASQLC.

In brief, by comparing with the traditional SQLite creation classes and functions, it can be noticed

that novice developer doesn’t need to understand SQLite creation functions and classes and how

the queries and execution processes worked. Additionally, using ASQLC library, the novice

developer will avoid extending SQLiteOpenHelper, overriding its functions and writing database

47

schema. Instea d, by following the previous steps, the developer can easily create and start

manipulation SQLite local database. In fact, novice developer only needs to write one line of code

to create the database and call insert, update or delete methods later on.

48

Chapter 5

Experiment Design

In this chapter, the preliminary experiment design and environment are presented. One experiment

environments was setup for the experiment.

5.1 Novice Developers Background

Student 1: is studying computer science third year at Birzeit University. The student has developed

an Android app for small and medium size mostly in group 2 or 3 students as a final project of

course. Furthermore, he has a low experience of android programing language and no experience

of SQLite database creation.

Student 2: is studying computer science third year at Birzeit University. The student has developed

an Android app for small and medium size for a courses’ project. Moreover, he has a medium

experience of android programing language and no experiment of SQLite database

Student 3 is studying computer science third year at Birzeit University. The student hasn’t

developed Android app before but he was dealing with SQL database and faced SQL connection

problems and schemas creation errors. He wants to create a simple Android app with a database

for his graduation project so that he is interesting to use this tool.

Student 4: is studying computer science second year at Birzeit University. The student has

developed an Android app for small size mostly in group 2 or 3 students as a courses’ final project.

Also, he has a very low experience of android programing language and SQLite database.

49

5.2 Experiment Environment

The experiment was conducted on Android studio version 2.3 running Android app on real android

device Samsung tablet with Android version 4.4.4, 8 GB memory. The operating system was

Windows 7, 32 bit.

The novice developers want to create a simple android app. The main activity of this app has four

buttons i.e. create SQLite database, insert, update and delete records. At the first, Once the button

of creating SQLite database is clicked the SQLite database should be created and return its creation

status. Secondly, the developers had to perform CRUD operation (Create, Read, Update and

Delete) on SQLite database. In this experiment, the novice developers were created SQLite

database for Android app using ASQLC tool and used its APIs i.e. insertRecords(),

updateRecords() and deleteRecord() methods..

5.2.1 ASQLC Tool

The developers should follow these steps:

1. Create Android app using Android Studio.

2. Fill out required database information (database name, tables, columns and its types)

using ASQLC user interface.

3. After specifying the database schema, our tool asks the developer to select the Android

project actual location.

4. The first part of our tool then generates an XML file under the assets folder of Android

Studio project directory.

5. The novice developers rebuild the Android app to synchronize app data in order to add

the XML file id to the R file of his/her Android project.

50

6. The developers import ASQLC jar file into his/her Android Studio project by adding

the ASQLC.jar file into libs folder and add it as a jar dependency to the Android app.

7. The developers create new object of DBCreator class that main class of ASQLC to

generate the SQLite database.

8. Finally, the developer performs the CRUD operations by using the ASQLC APIs i.e.

insertRecords(), updateRecords() and deleteRecord() methods.

5.3 Research Hypothesis

The experiment research Null Hypotheses are:

1) ASQLC requires high development skills and knowledge and programming experience to

develop SQLite database.

2) ASQLC has a high code complexity for SQLite database creation.

5.4 Experiment Metrics

The experiment was conducted to gather data for the following metrics.

5.4.1 Development and Debugging skills

The required skills and experience to creating SQLite database using ASQLC tool were measured

by observing the ability of novice developers and their skills to create SQLite database and if they

can complete the task without asking help.

5.4.2 Number of Source Lines of Code (SLOC)

LOC was measured for the app using ASQLC tool. Only logical lines of code were measured. User

interface code was not included in SLOC.

51

5.4.3 Ease of Learning

Easy of learning this tool was measured depending on the development ability and number of the

error when app execution. Also, the questionnaire at the end of the experiment was used in this

measurement.

5.5 Independent Variables

The experimental design has the independent variable of the one SQLite database creation

techniques, ASCLC tool that described in details in sections 5.2.1.

5.6 Experiment Scenario

In this section, different experiment scenarios are explained. All of the experiment metrics on the

ASQLC scenario were measured.

5.6.1 ASQLC Scenario

In this scenario, the student used ASQLC tool. After the student fills database details i.e. employee

table name, with three columns Id, Name and Area as a VARCHAR input type. The user interface

stores these details as a database schema into XML file under the android app directory into assets

folder. Then the student imports the ASQLC library by adding the ASQLC.jar file into libs folder

and add it as a jar dependency to the app, then he rebuilds the android app and creates an object

from the DBCreator class. After the SQLite is created successfully the student calls its APIs i.e.

insert, update and delete methods.

5.6.1.1 Development and debugging skills

In ASQLC scenario, the Development and debugging skills including the skills for import ASQLC

library, rebuild app, create the SQLite database using ASQLC and insert records using its APIs

were measured. After that, their skills are compared with the skills if they want to create SQLite

database without using this tool. In this case, the developers need to create three classes

databaseManager class that extends the sqliteOpenHelper, overrides onCreate and onUpgrade

52

methods, table class that has columns definition and insert method and main class that creates the

SQLite database and call insert method from the table class, the development and debugging skills

were including the skills of writing all of these classes and functions.

5.6.1.2 Number of source lines of code (SLOC)

The number of source lines of code was included the lines of code that related to the database

creation and process, not included the activity and actions code.

53

Chapter 6

Experiment Results

In this chapter, the author presents the experiment results for the experiment scenario which was

discussed in experiment design chapter.

6.1 Experiment Scenario Results

6.1.1 Development and Debugging Skills

Development and debugging skills are measured for SQLite database creation that includes import

ASQLC library, rebuild app and create the SQLite database. In addition, the development skills

for insert, update and delete records were observed.

6.1.1.1 SQLite creation

For creating SQLite database, the participants navigate the special web page and fill the database

table details. Once the save button is clicked, the web page asks to browse for the Android app

directory where the database schema XML file will be save. After the XML file was created under

the assets folder of the app, the participants rebuilt the app to synchronize it. Then they imported

the ASQLC library (jar) into the app. After the import process was done successfully, the library

was available under the project directory. Next, in the Activity code, they created a new object of

the ASQLC library by calling the constructor of DBCreator class. An example of calling

DBCreator codes is shown in Figure 6-1.

54

Figure 6-1. SQLite database creation code.

6.1.1.2 Insert records

The students inserted two records into the created table. Figure 6-2 shows how first student insert

two records by calling insertRecords().

Figure 6-2. Insert records code.

55

6.1.1.3 Update records

In update records, the students updated the inserted records by calling updateRecords() method.

Figure 6-3 shows the update records code of the third student.

Figure 6-3. Update records code.

6.1.1.4 Delete records

Finally, all of the students tested delete API by calling deleteRecord().For instance, Figure 6-4

shows the code of delete record for the forth student.

Figure 6-4. Delet records code.

56

6.1.2 Number of Source Lines of Code (SLOC)

Number of the source line of code (SLOC) only includes business logic code and do not include

user interface and other code. It measures in order to evaluate the development and coding

complexity.

Table 6-1. Number of the source line of code (SLOC).

Tool ASQLC

Student Student 1 Student 2 Student 3 Student 4

SLOC 14 15 15 14

Average 14.5

57

Chapter 7

Analysis and Discussion

7.1 Analysis and Discussion

7.1.1 Experiment Analysis

In this section the author discusses and analyzes the results gathered through the experiment and

questionnaire. During the experiment, observations about the behavior of the ASQLC and students

while using it are recorded:

 Development and debugging skills: the required development and debugging skills for

SQLite database creation and insert, update and delete records were very limited. Using

ASQLC too, the novice developers don’t need to write database schema, queries and

execution them or established database connection as shown before. The novice developers

were very surprised from the result since they tried to create it using Android available

resources as SqliteOpenHelper and rowQuery before but they failed with their limited

skills.

 Using ASQLC API: as shown before the student inserted, updated and deletes the records

using ASQLC APIs successfully without any failed trial. Moreover, they were called only

one function without writing any queries, in addition the time of do any of CRUD operation

was very small compared if they write schemas and execution them.

 The Number of source lines of code: when the source lines of code was measured including

SQLite database creation and insert, delete and update one record. The average of the

number of source lines of code was 14.5 lines which was a very small versus to any

58

database creation, table creation and queries of CRUD operation lines of code. In the other

words, the code complexity was very small since the novice developers write only 14

source line of code approximately.

 User satisfaction: at the end of the experiment, all of the volunteers were asked to fill a

questionnaire in order to measure the usability and effectiveness of the tool and user

satisfaction for SQLite generation automatically with minimum coding and development

skills. The questionnaire is attached in Appendix A.

After the questionnaire answers were analyzed, the result was as the following, all of the

voluntaries were a students of computer science college third and fourth year with low and

medium programming experience, three of four students were build an Android app for

course project and graduation project before and only one student didn’t do it before but

need to learn how to create a simple Android app with local database for graduation project.

For the students who built an Android app were faced a database creation and operation

problems. After they test ASQLC to create SQLite database for Android app, all of them

create SQLite database successfully without any problems or failure response. Moreover,

they evaluate this tool as a very easy tool and it simpler than other SQLite database

techniques. Finally, all of them preferred to use it again in their Android apps. The Figures

7-1 – 7-6 views some summary of student answers.

59

Figure 7-1. What is your programming

experience level?

Figure 7-2. If you create SQLite database

before, do you face any programming

or coding problem?

Figure 7-3. Can you achieve your goals from

this tool?

Figure 7-4. Do you face problems during

used this tool?

Figure 7-5. If you create SQLite database

before, compare between this tool and

other technique that used before?

Figure 7-6. Do you prefer using this toot

again?

60

7.1.2 Result Reflection on Hypothesis

After the experiment results were analyzed and discussed in detail, the results reflected on

experiments’ hypothesis as the following:

 Null Hypothesis 1: ASQLC requires high development skills and knowledge and

programming experience to develop SQLite database.

This hypothesis will be rejected since the novice developers can easily create SQLite local

database by writing one line of code to create the database and call insert, update or delete

methods later on. So that, they didn’t need to understand SQLite creation functions and classes

and how the queries and execution processes worked. Additionally, using ASQLC library, the

novice developer will avoid extending SQLiteOpenHelper, overriding its functions and writing

database schema.

 Null Hypothesis 2: ASQLC has a high code complexity for SQLite database creation.

This hypothesis will be rejected because of the number source lines of code was small and very

simple since one line for create SQLite database and you can insert, update or delete records

by filling list of data and calling ASQLC APIs. Furthermore, the average of number of source

lines of code was 14.5 lines for create SQLite database, insert two records and update and

delete one records.

Finally, the two null hypothesis will be rejected due to the previous result and discussion so that

the experiment result will be accepted.

60

7.1.3 Comparison with Other Tools

In this section, the author discusses and analyzes the results gathered through the literature study.

7.1.3.1 ASQLC versus existing tools

In this section, the author compares ASQLC to two tools available for Android SQLite database

developers: SQLiteOpenHelper and Simba. To our best knowledge, there are no other tools that

facilitate the SQLite database creation process. The comparison is based on carefully selected

features that are relevant in a SQLite database and novice developer namely: level of expertise

required, required writing schema, the ability of automatic generation SQLite database, table

creation, and view database using DDMS (Dalvik Debug Manager Service) which is a GUI tool

that monitor and manage Android emulators and devices. Moreover, it is a SQLite manager tool

that allows user to view, import and export SQLite database tables and records.

As to the configurability of the tools, ASQLC is the only tool that allows a novice developer to

create a SQLite database with limited development skills and knowledge. Further, it doesn’t

require writing SQLite queries, schemas, and create a database connection. It only requires filling

out tables details, import the ASQLC library and create an object of ASQLC library which in turn

builds SQLite database components automatically. By contrast, when using SQLiteOpenHelper

class, you need to write at least two classes: one to extend SQLiteOpenHelper, implement its

constructor and overriding onCreate() and onUpgrade() methods. The second class is for

identifying table parameters such as columns name and types and write insert, update and delete

schemas. On the other hand, Simba platform requires schema and query knowledge to write tables’

schema. Moreover, both SQLiteOpenHelper and Simba ignore non-computing and novice Android

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

61

developer student needs that create a simple SQLite database for Android app. A summary of the

comparison can be shown in Table 7-1.

Table 7-1. Tools features comparison.

Features ASQLC SQLiteOpenHelper Simba

API creation for CRUD Yes no yes

Level of expertise required Low medium medium

Automatic generation

SQLite

Yes no partial

Tables creation Yes yes yes

Required writing schemas No yes yes

View database using DDMS Yes yes no

Regarding API Creation for CRUD operation, both ASQLC and Simba create it but

SQLiteOpenHelper doesn’t. To perform CRUD operations using an SQLiteOpenHelper the

developer needs to use the ContentValues for table records and execute the query by calling a

execSQL() methods. Furthermore, both ASQLC and SQLiteOpenHelper can view SQLite

database using DDMS, while Simba platform did not allow novice developer browsing database

tables and records using DDMS. However, Simba has a component named sClientDataStore (SDS)

that stores app data on mobile devices persistent storage or external data storage.

7.2 Threat to Validity

The main threat to validity of this thesis was as the following internal and external validity:

62

 Internal validity refers to how well an experiment is done, especially how

many confounding variables in the experiment and their action at the same time [42, 43].

In this thesis, although the subjects of this experiment picked carefully with the same

experience development knowledge to avoid the internal validity but the experiment was

designed as a within group which affected by learnability and acquired skills and

knowledge from the first parts. In addition, as the critical literature review concludes that

there is no a complete solution, which can help the non-computing students to build mobile

apps with local storage so that the experiment was performed on ASQLC tool only.

 External validity refers to the degree to which the results of an empirical investigation can

be generalized to and across individuals, settings, and time [42, 43]. In this experiment the

experiment result was very clear with high acceptance level of efficiency and effectiveness

since it help the novice developer to create SQLite database with limited development

experience and minimum development time so that the result could be generalized the

experiment results on novice developers.

http://www.statisticshowto.com/confounding-variable/

63

Chapter 8

Conclusion

8.1 Conclusion

This thesis presented a new fully automatic generation tool for Android client data components

(SQLite). ASQLC is based on Model-Driven Engineering (MDE) using XML to represent the data

model which will be used later on to generate SQLite database and APIs.

In this thesis, a critical review of related works was presented in detail that led to conclude that

there does not exist a complete solution, which can help and assist a non-computing student in

creating a client (SQLite) database of Android mobile apps.

After the ASQLC was designed and implemented, an example of using ASQLC tool for a simple

Android app was discussed and showed the usability and effectiveness of the tool for SQLite

generation automatically with minimum coding and development skills. After that, a preliminary

experiment on ASQLC was performed by a less-skilled novice developer students to measure its

performance, how it helps the non-computing student in building Android mobile app and how it

improves the development time and effort.

In the analysis and discussion part of the thesis, the experiment result was shown how ASQLC has

improved SQLite database creation and CRUD operation for a novice developer. At the same time,

when the novice developers do the experiment, they agreed on that and preferred to use this tool

again especially in their graduation projects.

64

Finally, the Feature comparison between ASQLC and SQLiteOpenHelper class and Simba

platform as a SQLite database assistance was presented. The results show that the ASQLC might

be a promising tool and usable since it can generate SQLite database component and APIs

automatically with minimum effort and coding skills. In addition, it is more suitable for the novice

developers who do not have advanced development and coding skills. Our ASQLC tool code is

available at https://github.com/imanmusleh/SQLiteCreator.

8.2 Future Work

In the future work, the author plans to implement server-side database components for MySQL

in order to allow novice developer to create Client and server-side database for an Android App

that needs to connect to a server database. Also, the author aims to build a synchronization

algorithm to sync client and server database automatically.

65

References:

1. Amalfitano, D., A.R. Fasolino, and P. Tramontana. A gui crawling-based technique for

android mobile application testing. in Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference on. 2011. IEEE.
2. Amalfitano, D., et al., MobiGUITAR: Automated model-based testing of mobile apps. IEEE

Software, 2015. 32(5): p. 53-59.

3. Number of Android applications. 2017 May 29, 2017]; Available from:

https://www.appbrain.com/stats/number-of-android-apps.

4. Guo, C., et al. An automated testing approach for inter-application security in android. in

Proceedings of the 9th International Workshop on Automation of Software Test. 2014.

ACM.

5. How to use SQLite to store data for your Android app. Available from:

https://www.androidauthority.com/use-sqlite-store-data-app-599743/.

6. Gropengießer, F. and K.-U. Sattler, Database Backend as a Service: Automatic

Generation, Deployment, and Management of Database Backends for Mobile
Applications. Datenbank-Spektrum, 2014. 14(2): p. 85-95.

7. Zein, S., N. Salleh, and J. Grundy. Static analysis of android apps for lifecycle

conformance. in Information Technology (ICIT), 2017 8th International Conference on.

2017. IEEE.

8. How Google’s Android platform grew more popular than Apple’s iPhone. 2017 Mar 20,

2017]; Available from: http://business.financialpost.com/business-insider/how-googles-

android-platform-grew-more-popular-than-apples-iphone.

9. Android is the world's largest mobile platform — but it has to overcome these massive

hurdles to keep the lead. 2017 [cited May 17, 2017; Available from:

http://www.businessinsider.com/how-android-is-biggest-mobile-platform-ecosystem-
google.

10. Android. 2017 May 17, 2017]; Available from:

https://www.engineersgarage.com/articles/what-is-android-introduction.

11. Android Platform Architecture. 2017 May 30, 2017]; Available from:

https://developer.android.com/guide/platform/index.html.

12. The Android Operating System: 10 Unique Features. 2017 May 25, 2017]; Available from:

https://www.linkedin.com/pulse/android-operating-system-10-unique-features-private-

limited.

13. Balakumar, V. and I. Sakthidevi. An efficient database synchronization algorithm for

mobile devices based on secured message digest. in Computing, Electronics and Electrical

Technologies (ICCEET), 2012 International Conference on. 2012. IEEE.
14. How to use SQLite to store data for your Android app. Available from:

https://www.androidauthority.com/use-sqlite-store-data-app-599743/.

15. Jesson, J. and F. Lacey, How to do (or not to do) a critical literature review. Pharmacy

education, 2006. 6.

16. Chetan, S., et al., Cloud computing for mobile world. available at chetan. ueuo. com, 2010.

17. Christensen, J.H. Using RESTful web-services and cloud computing to create next

generation mobile applications. in Proceedings of the 24th ACM SIGPLAN conference

https://www.appbrain.com/stats/number-of-android-apps
https://www.androidauthority.com/use-sqlite-store-data-app-599743/
http://business.financialpost.com/business-insider/how-googles-android-platform-grew-more-popular-than-apples-iphone
http://business.financialpost.com/business-insider/how-googles-android-platform-grew-more-popular-than-apples-iphone
http://www.businessinsider.com/how-android-is-biggest-mobile-platform-ecosystem-google
http://www.businessinsider.com/how-android-is-biggest-mobile-platform-ecosystem-google
https://www.engineersgarage.com/articles/what-is-android-introduction
https://developer.android.com/guide/platform/index.html
https://www.linkedin.com/pulse/android-operating-system-10-unique-features-private-limited
https://www.linkedin.com/pulse/android-operating-system-10-unique-features-private-limited
https://www.androidauthority.com/use-sqlite-store-data-app-599743/

66

companion on Object oriented programming systems languages and applications. 2009.

ACM.

18. Dharmale, P.N. and P. Ramteke, Mobile cloud computing. International journal of science

and research (IJSR), 2013. 4(1): p. 2072-2075.

19. Hofmann, P. and D. Woods, Cloud computing: The limits of public clouds for business

applications. IEEE Internet Computing, 2010. 14(6): p. 90-93.
20. Fernando, N., S.W. Loke, and W. Rahayu, Mobile cloud computing: A survey. Future

generation computer systems, 2013. 29(1): p. 84-106.

21. Dinh, H.T., et al., A survey of mobile cloud computing: architecture, applications, and

approaches. Wireless communications and mobile computing, 2013. 13(18): p. 1587-1611.

22. Disadvantages of Cloud Computing: the pros and cons. 2017 Mar 17, 2017]; Available

from: http://cloudacademy.com/blog/disadvantages-of-cloud-computing/.

23. Bi, C., Research and application of SQLite embedded database technology. WSEAS

Transactions on Computers, 2009. 1(8): p. 83-92.

24. Owens, M., The definitive guide to SQLite (Apress). 2006.

25. How to use SQLite database in Swift . [cited 2018 2 Jan 2018]; Available from:
http://www.theappguruz.com/blog/use-sqlite-database-swift .

26. Vogel, L., Android sqlite database and contentprovider-tutorial. Java, Eclipse, Android

and Web programming tutorials, 2010. 8.

27. SQLite. 2018-04-10 [cited 2018 2018-03-10]; Available from:

http://www.sqlite.org/index.html.

28. Jinqin, W. and W. Lixin, The comparison of Embedded Database Berkeley DB and SQLite.

The application of SCM and Embedded System, 2005. 28(2): p. 5-7.

29. Pocatilu, P., Building Database-Powered Mobile Applications. Informatica Economica,

2012. 16(1): p. 132.

30. MDE – Model Driven Engineering – reference guide. 2009 Jan 15, 2009]; Available from:

http://www.theenterprisearchitect.eu/blog/2009/01/15/mde-model-driven-engineering-
reference-guide/.

31. Usman, M., Iqbal, M.Z. and Khan, M.U., 2017. A product-line model-driven engineering

approach for generating feature-based mobile applications. Journal of Systems and

Software, 123, pp.1-32.

32. Sendall, S. and Kozaczynski, W., 2003. Model transformation: The heart and soul of

model-driven software development. IEEE software, 20(5), pp.42-45.

33. Da Silva, A.R., 2015. Model-driven engineering: A survey supported by the unified

conceptual model. Computer Languages, Systems & Structures, 43, pp.139-155.

34. Nayar, S., Automated application creator for mobile data collection. 2013.

35. Agrawal, N., A. Aranya, and C. Ungureanu. Mobile Data Sync in a Blink. in HotStorage.
2013.

36. SQLiteOpenHelper. [cited 2017 22 Nov 2017]; Available from:

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html.

37. Zein, S., N. Salleh, and J. Grundy. Mobile application testing in industrial contexts: an

exploratory multiple case-study. in International Conference on Intelligent Software

Methodologies, Tools, and Techniques. 2015. Springer.

38. SQLiteOpenHelper.

39. How to use SQLite database in Android. [cited 2017 5 Dec 2017]; Available from:

http://www.theappguruz.com/blog/android-using-sqlite-database .

http://cloudacademy.com/blog/disadvantages-of-cloud-computing/
http://www.theappguruz.com/blog/use-sqlite-database-swift
http://www.sqlite.org/index.html
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
http://www.theenterprisearchitect.eu/blog/2009/01/15/mde-model-driven-engineering-reference-guide/
http://www.theenterprisearchitect.eu/blog/2009/01/15/mde-model-driven-engineering-reference-guide/
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://www.theappguruz.com/blog/android-using-sqlite-database

67

40. Dar, S.A. and J. Iqra, Synchronization of Data Between SQLite (Local Database) and SQL

Server (Remote Database). IUP Journal of Computer Sciences, 2016. 10(4): p. 7.

41. Wohlin, C., et al., Experimentation in software engineering. 2012: Springer Science &

Business Media.

42. Godwin, M., et al., Pragmatic controlled clinical trials in primary care: the struggle

between external and internal validity. BMC medical research methodology, 2003. 3(1):
p. 28.

43. Olsen, L., et al., The internal and external validity of the Major Depression Inventory in

measuring severity of depressive states. Psychological medicine, 2003. 33(2): p. 351-356.

68

Appendix A: Questionnaire

Part 1* Required

1. What is your collage major and minor if you have? *

o Computer science

o Computer system engineer
o Electric engineer
o Other:

2. How many years are you in college? *
o 1-2

o 3-4
o 5

o more than 5
3. What is your programming experience level? *

o Very low

o Low
o Medium

o High
4. What is the programming language you are know? *

o Java
o C
o PHP

o Javascript

o Other:

5. Did you build any android apps before? *

o Yes
o No

Part 2: If your answer on question 5 is yes, answer on questions from 6
to 10

6. What is your android app?

7. You are build the app for:

A. simple project or assignment.
B. Final project.
C. Graduate project.

8. Do you need to use database and store any required data?
A. Yes

B. No
9. Did you use SQLite database before?

A. Yes
B. No

10. If you create SQLite database before, do you have any programming or coding problem?

A. Yes
B. No

Part 3: for group A who used ASQLC tool

69

11. Can you create SQLite database using this tool?
A. Yes

B. No
12. Do you face problems while using this tool?

A. Yes
B. No

13. If your answer is Yes, what are the problems?

14. What is the usability level of this tool?
A. Very Easy

B. Easy
C. Difficult

15. If you create SQLite database before, compare between this tool and other technique that

used before?
A. Simpler.

B. the same.
C. More difficult.

16. Do you prefer using this tool again?
A. Yes.
B. No.

70

Appendix B: ASQLC User Interface Source Code

Main.js

Ext.define('ASQLCUI.view.main.Main', {
 extend: 'Ext.panel.Panel',

 xtype: 'app-main',

 requires: [

 'Ext.plugin.Viewport',

 'Ext.window.MessageBox',

 'ASQLCUI.view.main.MainController',

 'ASQLCUI.view.main.MainModel',

],

 controller: 'main',

 viewModel: 'main',

 header: {

 layout: {

 align: 'stretchmax'

 },

 title: {

 bind: {

 text: '{name}'
 },

 flex: 0

 },

 },

 layout : {

 type : 'vbox',

 align : 'stretch',

 },

 autoScroll : 'true',
 scrollable : true,

 items: [{

 margin: '20 50 20 20',

 xtype: 'textfield',

 fieldLabel: 'Table Name',

 id:'tableName',

 style: 'fontWeight:bold;',

 labelStyle: 'font-size:15px;font-weight: bold',

71

 fieldStyle: 'font-size: 15px; font-weight: bold',

 },{

 xtype: 'menuseparator'

 },{

 layout : {
 type : 'vbox',

 align : 'stretch',

 },

 autoScroll : 'true',

 scrollable : true,

 items:[{

 layout : {

 type : 'hbox',
 align : 'stretch',

 activeItem: 'contactCode'

 },

 defaultType: 'textfield',

 defaults: {

 margin: '20 50 20 20',

 editable: true,

 },

 items: [{

 fieldLabel: 'column Name',
 style: 'fontWeight:bold; fontSize: 30px',

 id: "colimnName1",

 labelStyle: 'font-size:20px;font-weight: bold',

 fieldStyle: 'font-size: 20px; font-weight: bold',

 // columnWidth:3,

 width: '50%',

 labelWidth: '30%',

 },{

 xtype: 'combobox',
 margin: '5 5 5 5',

 style: 'text-align: center',

 width: '30%',

 labelWidth: '30%',

 store: {

 type: 'dataType',

 id: 'transferToStore'

 },

 fieldLabel: 'Data Type',

72

 valueField: 'code',

 displayField: 'code',

 queryMode: 'local',

 labelStyle: 'font-size:20px;font-weight: bold',

 fieldStyle: 'font-size: 20px; font-weight: bold',

 id: "combo1"

 },{

 xtype: 'button',

 scale: 'medium',

 iconCls: 'pictos pictos-add'

 handler: 'addNewColumn'

 },{

 xtype: 'button',

 iconCls: 'pictos pictos-delete',

 scale: 'medium',
 handler: 'deleteColumn'

 }]

 }, {

 xtype : 'container',

 id : 'tabsContainer1',

 }]

 }

],

 dockedItems: [{
 xtype: 'toolbar',

 dock: 'bottom',

 onFocusableContainerMousedown: function(){},

 layout: {

 pack: 'center'

 },

 items:[{

 xtype: 'panel',

 layout: {

 type: 'hbox',
 align: 'stretch'

 },

 items:[{

 xtype: 'button',

 text: 'save',

 scale: 'large',

 handler: 'saveTable',

 labelStyle: 'font-size:25px;',

 fieldStyle: 'font-size: 25px; font-weight: bold',

73

 }

]

 }]

 }],

});

MainController.js

Ext.define('ASQLCUI.view.main.MainController', {

 extend: 'Ext.app.ViewController',

 alias: 'controller.main',

 requires: ['ASQLCUI.store.dataType'],

 addNewColumn: function (){

 Ext.getCmp('tabsContainer1').add(Ext.create('Ext.container.Container', {

 layout : {

 type : 'hbox',

 align : 'stretch',

 activeItem: 'contactCode'

 },

 defaultType: 'textfield',

 defaults: {

 margin: '20 50 20 20',

 editable: true,

 },
 items: [{

 fieldLabel: 'column Name',

 labelStyle: 'font-size:20px;font-weight: bold',

 fieldStyle: 'font-size: 20px; font-weight: bold',

 style: 'fontWeight:bold;',

 width: '50%',

 labelWidth: '30%',

 },{

 xtype: 'combobox',

 margin: '5 5 5 5',
 style: 'text-align: center',

 width: '30%',

 labelWidth: '30%',

 store: {

 type: 'dataType',

 id: 'transferToStore'+2

 },

 fieldLabel: 'Data Type',

 valueField: 'code',

74

 displayField: 'code',

 // id: 'transferToUser',

 queryMode: 'local',

 labelStyle: 'font-size:20px;font-weight: bold',

 fieldStyle: 'font-size: 20px; font-weight: bold',

 // listeners: {
 // afterrender :'fillUserStore'

 // }

 },{

 xtype: 'button',

 // text: 'new Column ',

 iconCls: 'pictos pictos-add',

 scale: 'large',

 handler: 'addNewColumn'

 },{

 xtype: 'button',
 iconCls: 'pictos pictos-delete',

 scale: 'large',

 handler: 'deleteColumn'

 }]

 }));

 },

 saveTable : function (){
 // this.Navigate();

 var map = new Ext.util.HashMap();

 var tableName = Ext.getCmp('tableName').rawValue;

 var columnName1 = Ext.getCmp('colimnName1').rawValue;

 var combo1 = Ext.getCmp('combo1').rawValue;

// var table ={tableName:[{"name" :columnName1, "type":combo1}]} ;

 var columns = [{"name" :columnName1, "type":combo1}];

 var parentColumns = Ext.getCmp('tabsContainer1');

 for(var i = 0 ; i<parentColumns.items.length ; i++){

 var column =parentColumns.items.items[i];

// for(var j =0 ; j <column.items.length; j ++){

 var columnName = column.items.items[0].rawValue;

 var columnType = column.items.items[1].rawValue;

75

 if (columnName !="" && columnType!= ""){

 //warning message

 columns.push ({ "name": columnName, "type": columnType});

 }

// }

 }

 map.add(tableName, columns);

 // this.download(map, "text300", "xml");

 this.download(this.createXmlData(map), "text300", "xml");

// var dbData = this.getDataFromDatabase();

 },

 deleteColumn : function (btn, index , layout){
// btn.up('tabsContainer1').delete();

 },

 download:function(data, filename, type) {

 var file = new Blob([data], {type: type});

 if (window.navigator.msSaveOrOpenBlob) // IE10+

 window.navigator.msSaveOrOpenBlob(file, filename);

 else { // Others

 var a = document.createElement("a");

 url = URL.createObjectURL(file);
 a.href = url;

 a.download = filename;

 document.body.appendChild(a);

 a.click();

 setTimeout(function() {

 document.body.removeChild(a);

 window.URL.revokeObjectURL(url);

 }, 0);

 }

},

 readTextFile: function (file)

 {

 var rawFile = new XMLHttpRequest();

 rawFile.open("GET", file, false);

 rawFile.onreadystatechange = function ()

 {

 if(rawFile.readyState === 4)

 {

76

 if(rawFile.status === 200 || rawFile.status == 0)

 {

 var allText = rawFile.responseText;

 alert(allText);

 }

 }
 }

 rawFile.send(null);

 },

 getPath: function ()

 {

 var path = document.location;

 var str = new String(path);

 var end = str.lastIndexOf("/");

 var absolutePath = str.substring(8,end)+"/";
 absolutePath=absolutePath.replace(/%20/g," ");

 return absolutePath;

 },

 sendXmlToBeSaved: function (xmlData){

 var xmlHttpRequest = new XMLHttpRequest();

 xmlHttpRequest.onreadystatechange = function() {

 if (xmlHttpRequest.readyState == 4 && xmlHttpRequest.status == 200) {
 var result = xmlHttpRequest.responseText;

 // Do what you want here

 // based on the result returned

 }

 }

 xmlHttpRequest.open("POST", "https://www.example.com/javaPhpOrOtherPage", true);

 xmlHttpRequest.send(xmlData);

 },

 createXmlData: function(dbData){
 var strXmlData = "<Tables></Tables>";

 var parser = new DOMParser();

 var xmlDocument = parser.parseFromString(strXmlData, "text/xml");

 // This is the root element

 var peopleElements = xmlDocument.getElementsByTagName("Tables");

 dbData.each(function(key, value, length){

 var tableNode = xmlDocument.createElement("Table");

 tableNode.setAttribute("name", key);

77

 for (var index = 0 ; index<value.length; index ++){

 var name = value[index].name;

 var type =value[index].type;

 var personNode = xmlDocument.createElement("column");

 personNode.setAttribute("name", name);

 var personType= xmlDocument.createTextNode(type);
 personNode.appendChild(personType);

 tableNode.appendChild(personNode);

 }

 peopleElements[0].appendChild(tableNode);

 });

 var serializer = new XMLSerializer();

 var strXmlData = serializer.serializeToString(xmlDocument);

 return strXmlData;

 }

});

 Application.js

Ext.define('ASQLCUI.Application', {

 extend: 'Ext.app.Application',

 name: 'ASQLCUI',

 stores: [

 // TODO: add global / shared stores here

],

 launch: function () {

 // TODO - Launch the application

 },

 onAppUpdate: function () {

 Ext.Msg.confirm('Application Update', 'This application has an update, reload?',

 function (choice) {

 if (choice === 'yes') {

 window.location.reload();
 }

 }

);

 }

});

App.js

Ext.application({

 name: 'SQLite DataBase',

78

 extend: 'ASQLCUI.Application',

 requires: [

 'ASQLCUI.view.main.Main'

],
 mainView: 'ASQLCUI.view.main.Main'

});

dataType.js

Ext.define('ASCLCUI.model.dataType', {

 extend: 'Ext.data.Model',

 fields: ['code']

});

dataType.js
Ext.define('ASCLCUI.store.dataType', {

 extend : 'Ext.data.Store',

 alias : 'store.dataType',

 model : 'ASCLCUI.model.dataType',

 data : [

 {"code":"Integer"},

 {"code":"Varchar"},

 {"code":"DOUBLE"},

 {"code":"FLOAT"},

 {"code":"LONG"}

]
});

79

Appendix C: ASQLC Library Source Code

DBCreator.java

package com.example.mylibrary;

import android.app.AlertDialog;

import android.content.ContentValues;

import android.content.Context;

import android.content.DialogInterface;

import android.database.sqlite.SQLiteDatabase;

import android.util.Log;

import java.sql.SQLException;

import java.util.List;

import java.util.Map;

/**

 * Created by iman on 7/31/2017.

 */

public class DBCreator {

 xmlParser parserObj;

 public Context getContext() {

 return context;

 }

 public void setContext(Context context) {

 this.context = context;

 }

 Context context ;

 public DBCreator(Context context, String dbName, int version){

 setContext(context);

 createXmlParser(dbName);

 DatabaseManager.openConnection(dbName, version, this);

 try {

 createTable();

 } catch (SQLException e) {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Error")

 .setMessage((e.getMessage()))

 .setCancelable(false)

 .setPositiveButton("ok", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 e.printStackTrace();

 }

 }

 public void createXmlParser(String dbName){

 parserObj = new xmlParser(getContext(), dbName);

 }

 private void createTable() throws SQLException {

 SQLiteDatabase db = null;

80

 try {

 db = DatabaseManager.getInstance().openDatabase();

 String st = null; // "CREATE TABLE IF NOT EXISTS " +map.get("table") + "

(";

 for (Map<String, String> object : parserObj.getMap()) {

 st = "CREATE TABLE IF NOT EXISTS " + object.get("Table") + " (";

 int i = 0;

 for (String key : object.keySet()) {

 if (key == "Table")

 continue;

 else {

 st += key.toUpperCase() + " " + object.get(key);

 if (key.equals("VARCHAR"))

 st += "(" + 10 + ")";

 if (i != object.size() - 2)

 st += ",";

 i++;

 }

 }

 st += ")";

 db.execSQL(st);

 st = null;

 }

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Alert")

 .setMessage("SQlite database is created successfully")

 .setCancelable(false)

 .setPositiveButton("ok",new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 } finally {

 if (db != null)

 DatabaseManager.getInstance().closeDatabase();

 }

 }

 public void insertRecords(String tableName , List<Map> rows) {

 try {

 SQLiteDatabase db = DatabaseManager.getInstance().openDatabase();

 long insert= -1 ;

 for (Map m : rows) {

 ContentValues values = new ContentValues();

 for(int index =0 ; index < m.size(); index ++) {

 Object key = m.keySet().toArray()[index];

 Object valueForFirstKey = m.get(key);

 addFieldValue(values, (String) key,valueForFirstKey);

 }

 // Do things with the list

 insert = db.insert(tableName, null, values);

 Log.i("insertt >>.", insert+">> table : "+tableName);

 }

 if (insert == -1) {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Error")

 .setMessage("Error , Faild insert record")

81

 .setCancelable(false)

 .setPositiveButton("ok",new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 else {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Alert")

 .setMessage("The records are inserted successfully")

 .setCancelable(false)

 .setPositiveButton("ok", new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 }

 finally {

 DatabaseManager.getInstance().closeDatabase();

 }

 }

 public void updateRecord (String tableName, Map<String,String> row, String column,

String value){

 try {

 SQLiteDatabase db = DatabaseManager.getInstance().openDatabase();

 ContentValues values = new ContentValues();

 for(int index =0 ; index < row.size(); index ++) {

 Object key = row.keySet().toArray()[index];

 Object valueForFirstKey = row.get(key);

 addFieldValue(values, (String) key,valueForFirstKey);

 }

 // Do things with the list

 long update = db.update(tableName, values,column+" = "+value,null);

 Log.i("update >>.", update+"");

 if (update == 0) {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Error")

 .setMessage("No record is updated")

 .setCancelable(false)

 .setPositiveButton("ok",new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 else {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Alert")

 .setMessage("The records are update successfully")

82

 .setCancelable(false)

 .setPositiveButton("ok", new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 } finally {

 DatabaseManager.getInstance().closeDatabase();

 }

 }

 public void deleteRecord (String tableName, String clmn , String value){

 try {

 SQLiteDatabase db = DatabaseManager.getInstance().openDatabase();

 long delete = db.delete(tableName, clmn+"="+value,null);

 Log.i("delete >>.", delete+"");

 if (delete == 0) {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Error")

 .setMessage("No record is deleted")

 .setCancelable(false)

 .setPositiveButton("ok",new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 else {

 AlertDialog.Builder builder2 = new AlertDialog.Builder(context);

 builder2.setTitle("Alert")

 .setMessage("The record is deleted successfully")

 .setCancelable(false)

 .setPositiveButton("ok", new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 AlertDialog alert2 = builder2.create();

 alert2.show();

 }

 } finally {

 DatabaseManager.getInstance().closeDatabase();

 }

 }

 private void addFieldValue(ContentValues cValues, String fldName, Object val) {

 cValues.put(fldName, (String) val);

 }

}

83

DatabaseManager .java

package com.example.mylibrary;

import java.util.concurrent.atomic.AtomicInteger;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

/**

 * Created by iman on 7/31/2017.

 */

public class DatabaseManager {

 private final AtomicInteger mOpenCounter = new AtomicInteger();

 private static DatabaseManager instance;

 private static SQLiteOpenHelper mDatabaseHelper;

 private SQLiteDatabase mDatabase;

 public static synchronized void openConnection(String databaseName, int

databaseVersion, DBCreator dbObj) {

 closeConnection();

 AppDBHelper dbHelper = new AppDBHelper(dbObj.getContext(), databaseName,

databaseVersion);

 if (instance == null) {

 instance = new DatabaseManager();

 mDatabaseHelper = dbHelper;

 }

 }

 public static synchronized DatabaseManager getInstance() {

 return instance;

 }

 public synchronized SQLiteDatabase openDatabase() {

 if (mOpenCounter.incrementAndGet() == 1)

 mDatabase = mDatabaseHelper.getWritableDatabase();

 return mDatabase;

 }

 public synchronized void closeDatabase() {

 if (mOpenCounter.decrementAndGet() == 0)

 mDatabase.close();

 }

 public static synchronized void closeConnection() {

 if (mDatabaseHelper != null)

 mDatabaseHelper.close();

 mDatabaseHelper = null;

 instance = null;

 }

}

AppDBHelper .java

package com.example.mylibrary;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteDatabaseLockedException;

84

import android.database.sqlite.SQLiteOpenHelper;

/**

 * Created by iman on 7/31/2017.

 */

public class AppDBHelper extends SQLiteOpenHelper {

 public AppDBHelper(Context context, String dbName, int dbVersion) {

 super(context, dbName, null, dbVersion);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 }

 @Override

 public SQLiteDatabase getWritableDatabase() {

 while (true) {

 try {

 return super.getWritableDatabase();

 } catch (SQLiteDatabaseLockedException e) {

 System.err.println(e);

 }

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 System.err.println(e);

 }

 }

 }

 public synchronized void close(SQLiteDatabase db) {

 db.close();

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 }

}

xmlParser.java

package com.example.mylibrary;

import android.content.Context;

import android.util.Log;

import org.xmlpull.v1.XmlPullParser;

import org.xmlpull.v1.XmlPullParserException;

import org.xmlpull.v1.XmlPullParserFactory;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

/**

 * Created by iman on 8/13/2017.

 */

85

public class xmlParser {

 ArrayList<Map<String, String>> map;

 public xmlParser(Context context, String dbName){

 XmlPullParserFactory xmlPullParserFactory;

 try {

 xmlPullParserFactory = XmlPullParserFactory.newInstance();

 xmlPullParserFactory.setNamespaceAware(false);

 XmlPullParser parser = xmlPullParserFactory.newPullParser();

 InputStream is = openXmlInputStream(context, dbName);

 parser.setInput(is, null);

 getLoadedXmlValues(parser);

 } catch (XmlPullParserException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public ArrayList<Map<String, String>> getMap() {

 return map;

 }

 public void setMap(ArrayList<Map<String, String>> map) {

 this.map = map;

 }

 private InputStream openXmlInputStream(Context context, String dbName) throws

IOException {

 InputStream is = context.getAssets().open(dbName +".xml");

 return is;

 }

 private void getLoadedXmlValues(XmlPullParser parser) throws

XmlPullParserException, IOException {//ArrayList<Map<String, String>>

 Map<String,String> map = null;

 ArrayList<Map<String, String>>arrayList= new ArrayList<Map<String, String>>();

 String key = null, value = null, column= null , type = null ;

 int eventType = parser.getEventType();

 String name = null;

 while (eventType != XmlPullParser.END_DOCUMENT) {

 if (eventType == XmlPullParser.START_DOCUMENT) {

 Log.d("utils","Start document");

 } else if (eventType == XmlPullParser.START_TAG) {

 if (parser.getName().equals("Table")) {

 String tableName = parser.getAttributeValue(null,

"name");//)(null, "linked", false);

 map = new HashMap<String,String>();//: new HashMap<String,

String>();

 map.put("Table", tableName);

 } else if (parser.getName().equals("column")) {

 column = parser.getAttributeValue(null, "name");

 if (null == column) {// <column name="code">String</column>

 }//type

 }

 } else if (eventType == XmlPullParser.END_TAG) {

86

 if (parser.getName().equals("column")) {

 map.put(column, type);

 key = null;

 value = null;

 }

 else if (parser.getName().equals("Table")) {

 arrayList.add(map);

 }

 } else if (eventType == XmlPullParser.TEXT) {

 if (null != column) {

 type = parser.getText();

 }

 }

 eventType = parser.next();

 }

 setMap(arrayList);

 }

}

build.gradle

apply plugin: 'com.android.library'

android {

 compileSdkVersion 25

 buildToolsVersion "25.0.3"

 defaultConfig {

 minSdkVersion 17

 targetSdkVersion 25

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-

rules.pro'

 }

 }

}

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {

 exclude group: 'com.android.support', module: 'support-annotations'

 })

 compile 'com.android.support:appcompat-v7:25.3.1'

 testCompile 'junit:junit:4.12'

}

AndroidMainfest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

87

 package="com.example.mylibrary">

 <application android:allowBackup="true" android:label="@string/app_name"

 android:supportsRtl="true">

 </application>

</manifest>

